Safety-Prioritizing Curricula for Constrained Reinforcement Learning Cevahir Koprulu¹, Thiago D. Simão², Nils Jansen³, Ufuk Topcu¹

Problem Setting

Objective of curriculum learning Automatically generate a sequence of tasks/contexts to accelerate learning.

Gap

Existing CL approaches overlook constraints!

Contextual Constrained MDP $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{X}, \mathsf{M}, \mathcal{D}, \gamma \rangle$

Context Space $\mathbf{x} \in \mathcal{X}$

From contexts to Constrained MDPs $M(x) = \langle \mathcal{S}, \mathcal{A}, p_{\mathbf{x}}, p_{0,\mathbf{x}}, r_{\mathbf{x}}, c_{\mathbf{x}} \rangle$

Optimal Policy

Given: Target context distribution φ

 $\pi^* \in \max_{\pi} \mathbb{E}_{\mathbf{x} \sim \varphi} [V_r^{\pi}(\mathbf{x})]$ s.t. $\mathbb{E}_{\mathbf{x}\sim\varphi}[V_c^{\pi}(\mathbf{x})] \leq D$

Constraint Violation Regret

 $\sum_{l \in [L]} \max\{\mathbb{E}_{\mathbf{x} \sim \rho_l} [V_c^{\pi_l}(\mathbf{x})] - D, 0\}$ Expected cost of policy π_l in context

distribution ρ_l at iteration l

Safe vs Unsafe Curricula Naïve attempts lead to constraint violations early on during training!

DEUCE. Data-Driven Verification and Learning under Uncertainty

Results: Highest success rates with low constraint violation regret

In safety-maze, SCG achieves lower CV regret than CURROT, the only other method that yields 100% success. In safety-push and goal, SCG achieves the highest success rates, simultaneously reducing constraint violations.

